Purchase Solution

Showing a quotient space is a complete metric space; Finite measurable space; Symmetric difference; Equivalence relations

Not what you're looking for?

Ask Custom Question

Let (X,B,mu) be a complete, finite measuable space. For each C,D in B, set

d(C,D) = mu (C / D)

where C / D is the symmetric difference of C and D. We say that two measurable sets C,D are equivalent if d(C,D)=0 (this is an equivalence relation).

Let E be the set of equivalence classes, and show that d introduces a metric on E and that (E,d) is a complete metric space.

Attachments
Purchase this Solution

Solution Summary

Showing a quotient space is a complete metric space; Finite measurable space; Symmetric difference; Equivalence relations are investigated. The solution is detailed and well presented.

Purchase this Solution


Free BrainMass Quizzes
Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Probability Quiz

Some questions on probability

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.