# Symbolic Logic Problem

Not what you're looking for?

I need to know how to construct a formal proof which shows that the sentence below is a theorem of predicate logic. The ^ sign indicates the word "or". The asterisk indicates a conditional usually indicated by an arrow. No quantifier negation rules can be used.

[(X)(~RX^NX)&~(EX)NX^(EY)(Z)SZY] * (~(EX)RX ^ (Z)(EY)SZY)

##### Purchase this Solution

##### Solution Summary

The validity of a symbolic logic expression is investigated. The asterisks indicating a conditional arrow is analyzed. The solution is detailed.

##### Solution Preview

To solve this we consider the right hand side of the conditional, i.e.:

[(X)(~RX^NX)&~(EX)NX^(EY)(Z)SZY]

We rearrange the problem as the following argument:

[(X)(~RX^NX)&~(EX)NX^(EY)(Z)SZY]

--------------------------------

(Show) (~(EX)RX ^ (Z)(EY)SZY)

We can also split up and write the premises as this (using the ampersand out &o rule):

1. (X)(~RX^NX)

2. ~(EX)NX^(EY)(Z)SZY

------------------------

(Show) (~(EX)RX ^ (Z)(EY)SZY)

Of course we ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Probability Quiz

Some questions on probability

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.