# Proof of Fixed Point Theorem using Stokes Theorem and Analysis

Not what you're looking for?

Prove that if D is the closed disc |x| 1 in R2, then any map f 2 C2[D ! D] has a fixed point: f(x) = x. The proof is by contradiction, and uses Stokes theorem. Follow the steps outlined below.

(1) Define a new map F(x) = 1

....

Show that F has no fixed points if r is small enough.

(2) Draw the ray from F(x) to x (these are distict) and note where it cuts the circle C : |x| = 1. This point G(x) = (cos , sin ) depends smoothly on x, i.e. ...;moreover, it reduces to the identity on C.

(3) Now compute

....

(4) Explain why the above is a contradiction?

##### Purchase this Solution

##### Solution Summary

The solution shows a proof of a fixed point theorem using Stokes theorem and analysis. The solution is detailed and well-presented.

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Probability Quiz

Some questions on probability

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.