Brouwer's Fixed Point Theorem
Not what you're looking for?
Please see the attached file for the fully formatted problems.
Prove that if D is the closed disc |x| =< 1 in R2, then any map f E C2[D --> D]
has a fixed point: f(x) = x. The proof is by contradiction, and uses Stokes theorem. Follow the steps outlined below.
(1) Define a new map F(x) = ...
.....
Show that F has no fixed points if r is small enough.
(2) Draw the ray from F(x) to x (these are distinct) and note where it cuts the circle C : |x| = 1. This point G(x) = (cos , sin ) depends smoothly on x, i.e. 2 C2(D); moreover, it reduces to the identity on C.
(3) Now compute
....
(4) Explain why the above is a contradiction?
Since this is an analysis problem, please be sure to be rigorous, and include as much detail as possible so that I can understand. Please also state if you are making use of some fact or theorem. Thanks!
Purchase this Solution
Solution Summary
Problems involving Brouwer's fixed Point Theorem are solved. The solution is detailed and well-presented.
Purchase this Solution
Free BrainMass Quizzes
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Multiplying Complex Numbers
This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts
Probability Quiz
Some questions on probability
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.