Prove that if D is the closed disc $|x| \leq 1$ in \mathbb{R}^{2}, then any map $f \in C^{2}[D \rightarrow D]$ has a fixed point: $f(x)=x$. The proof is by contradiction, and uses Stokes theorem. Follow the steps outlined below.
(1) Define a new map $F(x)=\frac{1}{r} f\left(\frac{x}{r}\right)$ for $r>1$ and $|x| \leq 1$. Show that F has no fixed points if r is small enough.
(2) Draw the ray from $F(x)$ to x (these are distict) and note where it cuts the circle $C:|x|=1$. This point $G(x)=(\cos \phi, \sin \phi)$ depends smoothly on x, i.e. $\phi \in C^{2}(D)$; moreover, it reduces to the identity on C.
(3) Now compute

$$
2(\text { Area } D)=2 \pi^{2}=\int_{C} x_{1} d x_{2}-x_{2} d x_{1}=\int_{C} \nabla \phi \cdot d x
$$

(4) Explain why the above is a contradiction?

Since this is an analysis problem, please be sure to be rigorous, and include as much detail as possible so that I can understand. Please also state if you are making use of some fact or theorem. Thanks!

