Incorrect Proof
Take an in-depth look into this proof. Obviously it is wrong. Where is it wrong and why? This is obviously wrong. Where and why? Detailed explanation is needed of where and why it is wrong with all examples. Thanks
Let a = b.
Multiply both sides by a (OK because we don't violate the equal sign). We get a² = ab.
Subtract b² from both sides (again OK because we don't violate the equal sign).
We get a² - b² = ab - b².
Factor the left side. a² - b² = (a + b)(a - b).
Factor the right side. ab - b² = b(a - b).
Set these two factors equal to each other. They started that way, so there's no problem here.
We get (a + b)(a - b) = b(a - b).
Now, divide both sides by (a - b). Again, we're not violating the equal sign.
We're left with a + b = b.
But, we originally set a = b. Therefore, let's replace a with b on the left side of the equation.
We get b + b = b. or 2b = b.
Now, the last step. We divide both sides by b.
The result is 2 = 1!
© BrainMass Inc. brainmass.com March 6, 2023, 1:27 pm ad1c9bdddfhttps://brainmass.com/math/discrete-math/incorrect-proof-explanation-26435
Solution Preview
Please see the attached file.
Take an in-depth look into this proof. Obviously it is wrong. Where is it wrong and why? This is obviously wrong. Where and why? Detailed explanation is needed of where and why it is wrong with all examples.Thanks
Let a = b.
Multiply both sides by a (OK because we don't violate the equal sign). We get a² = ...
Solution Summary
This is an incorrect proof that begins a=b and ends 2=1, then shows where the mistake is.