Purchase Solution

Derivation of thermodynamic identities

Not what you're looking for?

Ask Custom Question

I need the solution to #10 on the attached file.

beta=(1/V)(dV/dT)_p=coefficient of expansion
k=-(1/V)(dV/dp)_T= compressibility
gamma=Cp/Cv
Cv and Cp are just heat capacities.

Attachments
Purchase this Solution

Solution Summary

We explain how to obtain the expressions for the partial derivatives. The hear capacities are given.

Solution Preview

I'm going to derive different but equivalent expressions for the firsty two partial derivatives. That they are in fact equal follows from the identity:

C_p - C_v = V T beta^2/kappa (1)

the derivation of which is given in almost all thermodynamics textbooks.

To simplify (dT/dV)_S consider rewriting this as partial derivatives of S w.r.t. T and V:

(dT/dV)_S = - (dS/dV)_T / (dS/dT)_V (2)

To see this, express dS in terms of dT and dV:

dS = (dS/dT)_V dT + (dS/dV)_T dV

The ratio of infinitesimal dT and dV at constant S then follows from setting dS zero here and solving for the ratio. This is by definition the desired partial derivative.

The heat capacity at some constant quantity X is T (dS/dT)_X. We can thus write (2) as:

(dT/dV)_S = - (dS/dV)_T / (dS/dT)_V = - T (dS/dV)_T / C_V (3)

We can simplify this further by using a Maxwell relation involving (dS/dV)_T. Starting from the fundamental thermodynamic ...

Purchase this Solution


Free BrainMass Quizzes
Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.