Explore BrainMass

Explore BrainMass

    Kirchoff's Laws : Mass-Spring Equation

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    Consider a basic electric circuit with a resistor, capacitor, and inductor and input voltage V(t). It follows Kirchoff's Laws that the charge on the capacitor Q = Q(t) solves the differential equation: {see attachment}, where L (inductance), R (resistance), and C (capacitance) are positive constants (depending on material). The current in the circuit is the rate of change of the charge: I(t) = Q'(t).

    (a) Compare this to the mass-spring equation. What plays the role of the mass, spring constant, damping coefficient, displacement, velocity, external forcing?
    (b) Suppose a given circuit has no input voltage (V(t)=0) and a positive initial charge Q(0) = Qo > 0. Find a condition on R > 0 so that the equation has oscillatory solutions.
    (c) If you wanted to build a circuit that would oscillate forever without any input voltage (V(t)=0) what could you do?

    **Please see attachment for diagram. Note: no computer, no calculator. Show how you would have done things by hand. Thanks very much!

    © BrainMass Inc. brainmass.com March 4, 2021, 6:07 pm ad1c9bdddf
    https://brainmass.com/math/complex-analysis/kirchoffs-laws-mass-spring-equation-30557

    Attachments

    Solution Preview

    Please see the attached file for the complete solution.
    Thanks for using BrainMass.

    (a)
    The mass-spring equation is where m is mass; b is damping constant; k is spring force constant; x is displacement of mass from its original position; f(t) is applied external force.
    The ...

    Solution Summary

    ODEs and Kirchoff's Law are investigated. The solution is detailed and well presented. The solution received a rating of "5" from the student who posted the question.

    $2.19

    ADVERTISEMENT