Explore BrainMass

# CLEP exam sample questions

Not what you're looking for? Search our solutions OR ask your own Custom question.

This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

Can you please help me with these. I can not get these and I am trying to study for the clep exam. Do not do the circled problems only the ones listed below. Thank you for help. Please show step so that I can understand better.

129

1. a) 6, b) 12, c) 16, d) 20
2. a) 24, b) 26
3. a) 35, b) 36
4. a) 46, b) 48

P. 143

6.b) 50
7. #82

P. 151

8. # 24
9. # 30
10. # 44,

https://brainmass.com/math/complex-analysis/clep-exam-sample-questions-15272

#### Solution Preview

6.)
(3+7i) - (2+5i)
= 3 + 7i - 2 - 5i
= (3-2) + (7-5)i

12.)
(3i)(5i)
= 3i*5i
= 15*i^2
= 15*(-1) [Because, i^2 = -1]

16.)
(2-i)(-5+6i)
= 2*(-5) + 2*6i - i*(-5) - i*6i
= -10 + 12i + 5i - 6i^2
= -10 + 17i - 6*(-1) [Because, i^2 = -1]
= -10 + 17i + 6

20.)
(3+8i)(3-8i)
= 3^2 - (8i)^2
[Because, (a+b)(a-b) = a^2 - b^2]
= 9 - 64*i^2
= 9 - 64*(-1)
= 9 + 64

24.)
(3-5i)/(2-i)
Multiply in numerator and denominator by the conjugate of denominator
=[(3-5i)*(2+i)]/[(2-i)*(2+i)]
= [ 3*2 + 3*i - 5i*2 - 5i*i]/(2^2 - i^2)
= [6 + 3i - 10i - 5*i^2]/(4 - (-1)) [Because, i^2 = -1]
= [6 -7i -5*(-1)]/(4+1)
= [6 -7i + 5]/5

26.)
(-5+10i)/(3+4i)
Multiply in numerator and denominator by the conjugate of denominator
=[(-5+10i)*(3-4i)]/[(3+4i)*(3-4i)]
= [-5*3 - 5*(-4i) + 10i*3 + 10i*(-4i)]/(3^2 - (4i)^2)
= [ -15 + 20i + 30i - 40*i^2]/(9 - 16*i^2)
= [ -15 + 50i - 40*(-1)]/(9 - 16*(-1))
= [-15 + 50i + 40]/(9+16)
= (25 + ...

#### Solution Summary

This shows a variety of sample CLEP questions regarding complex numbers.

\$2.49