Explore BrainMass

# Advanced Calculus: The Existence Theorem for Nonlinear Differential Equations

Not what you're looking for? Search our solutions OR ask your own Custom question.

This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

Please see the attached file for the fully formatted problems.

Let g(x,y) be Lipschitz continuous. Let ? (x) = y , and for n > 0 define ? (x) = y +
Prove that ? (x) &#61614; ?(x) on [x - , x + ], for some > 0, where ?(x) solves the ODE ?'(x) = g(x, ?(x)), and ?(x ) = y

https://brainmass.com/math/calculus-and-analysis/existence-theorem-nonlinear-differential-equations-19101

#### Solution Preview

Please see the attached file for the complete solution.
Thanks for using BrainMass.

Proof:
is Lipschitz continuous, then it satisfies the Lipschitz condition. There exists , such that is continuous, so we can suppose is continous in a rectangular region , . Since is a closed region, can reach its maximum value in this ...

#### Solution Summary

The existence theorem for nonlinear differential equations is discussed.

\$2.49