# Complex number identities

Let z, w E C

a) Prove the following identities:

i) |z+w|^2 = |z|^2 + 2Re(zw) + |w|^2

ii) |z - w|^2 = |z|^2 - 2Re(zw) + |w|^2

b) Deduce that |z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2).

c) Use (a)(i) to prove that |z+w| < |z-| + |w| and give necessary conditions for equality to hold.

d) Prove that [|z| - |w|] < |z-w|.

© BrainMass Inc. brainmass.com October 10, 2019, 6:48 am ad1c9bdddfhttps://brainmass.com/math/calculus-and-analysis/complex-number-identities-557788

#### Solution Preview

Let z = x1+i.y1, w = x2 + i.y2

a.i.

Left Hand Side (L.H.S.):

|z+w|^2 = (x1+x2)^2 + (y1+y2)^2 = x1^2 + x2^2 + y1^2 +y2^2 + 2x1.x2 + 2y1.y2

= x1^2 + y1^2 + x2^2 + y2^2 + 2(x1.x2+y1.y2)

= |z|^2 + |w|^2 + 2Re(z.w_bar) = R.H.S.

[Because, z.w_bar = (x1+i.y1).(x2-i.y2) = (x1.x2 + y1.y2) + i.(x2.y1 - x1.y2)]

a.ii.

L.H.S.:

|z-w|^2 = (x1-x2)^2 + (y1-y2)^ = x1^2 + x2^2 + y1^2 +y2^2 - 2x1.x2 - 2y1.y2

= x1^2 + y1^2 + x2^2 + y2^2 - 2(x1.x2+y1.y2)

= |z|^2 + |w|^2 - 2Re(z.w_bar) = R.H.S.

b.

L.H.S.

|z+w|^2 + |z-w|^2 = ...

#### Solution Summary

Some complex number identities are proven in the solution.