# a geometric construction

Not what you're looking for?

Given:

Define a geometric construction as an object that can be created using only a compass and a straightedge. Mathematicians have shown that it is not possible to:

1. Geometrically construct a square with an area equal to that of a given circle.

2. Use a geometric construction to trisect an arbitrary angle.

The proofs of these two theorems require abstract algebra.

Task:

Summarize the history of these two problems.

##### Purchase this Solution

##### Solution Summary

This solution strongly emphasizes a geometric construction.

##### Solution Preview

I am really not sure the level of detail your teacher will want, but I will try to identify what I consider to be some key points in the history of these problems.

Squaring the circle (also called Quadrature of the Circle):

Solving this problem using only a straightedge and a compass hinges on knowing the value of pi. Some events in the history of the problem are:

1. Problem is mentioned in the Egyptian Rhind papyrus dating back to 1800 B.C.. Pi is approximated as 256/81 and the area of the circle is given by 64/81 d^2.

2. Many ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Probability Quiz

Some questions on probability

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts