Explore BrainMass

### Explore BrainMass

This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

2) For the function y = x2 - 4x - 5, perform the following tasks:
a) Put the function in the form y = a(x - h)2 + k.

Show work in this space

b) What is the equation for the line of symmetry for the graph of this function?

c) Graph the function using the equation in part a. Explain why it is not necessary to plot points to graph when using y = a (x - h)2 + k.
Show graph here.

Explanation of graphing.

d) In your own words, describe how this graph compares to the graph of y = x2?

3) Suppose a baseball is shot up from the ground straight up with an initial velocity of 64 feet per second. A function can be created by expressing distance above the ground, s, as a function of time, t. This function is s = -16t2 + v0t + s0
? 16 represents 1/2g, the gravitational pull due to gravity (measured in feet per second2).
? v0 is the initial velocity (how hard do you throw the object, measured in feet per second).
? s0 is the initial distance above ground (in feet). If you are standing on the ground, then s0 = 0.
a) What is the function that describes this problem?
Answer: This one I really don't understand.

b) The ball will be how high above the ground after 1 second?
Show work in this space.

c) How long will it take to hit the ground?
Show work in this space.

d) What is the maximum height of the ball? What time will the maximum height be attained?

Show work in this space.

4) John has 300 feet of lumber to frame a rectangular patio (the perimeter of a rectangle is 2 times length plus 2 times width). He wants to maximize the area of his patio (area of a rectangle is length times width). What should the dimensions of the patio be, and show how the maximum area of the patio is calculated from the algebraic equation.

Show clearly the algebraic steps which prove your dimensions are the maximum area which can be obtained. Use the vertex formula to find the maximum area.

Show work in this space.

https://brainmass.com/math/basic-algebra/117080

#### Solution Preview

Please see the attached file for details.

2) For the function y = x2 - 4x - 5, perform the following tasks:
a) Put the function in the form y = a(x - h)2 + k.

Show work in this space
Solution.

b) What is the equation for the line of symmetry for the graph of this function?

As , the line of symmetry is x=2.

c) Graph the function using the equation in part a. Explain why it is not necessary to plot points to graph when using y = a (x - h)2 + k.
Show graph here.

Explanation of graphing.

Since , the graph is symmetric with line x=2 and the vertex is (2,-9), we can draw this graph easily.

d) In your own words, describe how this graph compares to the graph of y = x2?

Answer: If we shift the graph of to the right side 2 units and then move vertically downwards 9 unit, then we get a graph of .

3) ...

#### Solution Summary

Problems involving quadratic equations are solved. The solution is detailed and well presented.

\$2.49