Explore BrainMass

Explore BrainMass

    Poisson Distribution for Major Earthquakes

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    For a recent period of 100 years, there were 93 major earthquakes (at leat 6.0 on the Richter scale) in the world (based on data from the World Almanac and Book of facts). Assuming that the Poisson distribution is a suitable model, find the mean number of major earthquakes per year, then find the probability that the number of earthquakes in a randomly selected year is:

    a=0
    b=1
    c=2
    d=3
    e=4
    f=5
    g=6
    h=7

    Here are the actual results:

    47 years (0 major earthquakes)
    31 years (1 major earthquakes)
    13 years (2 major earthquakes)
    5 years (3 major earthquakes)
    2 years (4 major earthquakes)
    0 years (5 major earthquakes)
    1 year (6 major earthquakes)
    1 year (7 major earthquakes)

    Compare the actual results to those expected from the Poisson probabilities. Explain, how you do the comparison. Does the Poisson distribution serve as a good device for predicting the actual results?

    © BrainMass Inc. brainmass.com June 3, 2020, 10:39 pm ad1c9bdddf
    https://brainmass.com/statistics/probability/poisson-distribution-242057

    Solution Preview

    Since there were 93 earthquakes in 100 years, we can estimate the average rate of earth quakes per year as 93/100 = 0.93

    The poisson distribution is a discrete distribution where the probability is given by:

    Probability(Number of events in 1 year = k) = rate^k x e^(-rate)/ k!
    where e = 2.71828 i.e. base of the natural logarithm and ^ means raised to the power of and ! means factorial and
    rate = 0.93 is the rate of events per year.

    Let k denote the number of earthquakes in a year. In 1 year the:

    Probability of 0 earth quakes (i.e. k = 0) is 0.93^0 x e^-0.93/0! = 0.39455
    Probability of 1 earth quakes (i.e. k = 1) is 0.93^1 x e^-0.93/1! = 0.36693
    Probability of 2 earth quakes (i.e. k = 2) is 0.93^2 x e^-0.93/2! = 0.17062
    Probability of 3 earth quakes (i.e. k = 3) is 0.93^3 x e^-0.93/3! = 0.05289
    Probability of 4 earth quakes (i.e. ...

    Solution Summary

    The solution uses a Poisson distribution to examine major earthquakes. The probability that the number of earthquakes in a randomly selected year is determined.

    $2.19

    ADVERTISEMENT