Explore BrainMass

Explore BrainMass

    Mathematical equation for my kinetic entity ring

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    I have come up with the hypothesis of the existence of a kinetic entity ring that could explain the physics behind Einstein's theory of relativity. I have posted my theory in my webpage at www.sc-innovation.com/entity.html. I am not a mathematician and so cannot come up with the equation for my kinetic entity ring. I hope someone could do this for me. Please go to my webpage above to have a clearer idea of my kinetic entity ring is about.
    I want to come up with an equation from my kinetic entity ring about "Time Dilation". Suppose there are two clocks, one at rest and the other is in a space ship travelling at high speed. Initially both clocks show the same time. As time goes by the two clocks will show time differences. I want an equation to show the relationship between their time differences. I want you to comment on the "Time Dilation" from my kinetic entity ring to that of Einstein's theory of relativity.

    © BrainMass Inc. brainmass.com May 24, 2023, 1:01 pm ad1c9bdddf
    https://brainmass.com/physics/radiation/mathematical-equation-for-my-kinetic-entity-ring-9455

    Solution Preview

    I think, the way you are trying to propose your theory is really a great sprit and adventure. You are doing really a great job.
    <br>
    <br>Here I've tried to derive the relation for time dilation and hope that will satisfy you.
    <br>
    <br>let the angle between c and v is Q(read as theta)
    <br>therefore,
    <br>cos(Q) = v/c (c is speed of light)
    <br>therefore vertical component i.e., sine component:
    <br>sin(Q) = sqrt( 1 - cos^2(Q)) = ( 1 - (v/c)^2)
    <br>therefore,
    <br>vertical component of displacement = s*sin(Q)
    <br>hence,
    <br>time lapse:
    <br>t = s*sin(Q)/c = (s/c) * sin(Q) = t' * sin(Q)
    <br>=> t = t' * sqrt(1 - (v/c)^2)
    <br>where t is the proper time and t' is the rest frame measured time.
    <br>therefore,
    <br>time difference = t' - ...

    $2.49

    ADVERTISEMENT