Explore BrainMass
Share

Photoelectric effect

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

Discuss how Einsteins suggestion that light may be treated as 'particles ' or quanta of energy can explain the observations of the photoelectric effect.

https://brainmass.com/physics/photoelectric-effect/quantum-physics-einstein-photoelectric-effect-141176

Solution Preview

From the observations of the photoelectric effect, one can conclude the following: When a metal is irradiated by light above some threshold frequency, electrons from the metal escape. Below the ...

Solution Summary

The following posting discusses Einstein's theory that light could be both a wave and a particle.

\$2.19

Millikan experiment, Compton effect, photoelectric effect

1. In a Millikan oil drop experiment the terminal velocity of the droplet is observed to be vt = 1.5 mm/s. The density of the oil is = 830 kg/m3 and the viscosity of air is = 1.82 10-5 kg/m s. Use the following equations to find the values below.

µm
(b) Calculate the mass of the droplet.
kg
(c) Calculate the coefficient of friction.
kg/s

12. A gamma ray of 630 keV energy Compton scatters from an electron. Find the energy of the photon scattered at 89°, the kinetic energy of the scattered electron, and the recoil angle of the electron.
keV (photon)
keV (electron)
°

3. What is the threshold frequency for the photoelectric effect of barium ( = 2.5 eV)?
Hz
What is the stopping potential if the wavelength of the incident light is 420 nm?
eV

4. Light from a slit passes through a transmission diffraction grating of 330 lines/mm, which is located 2.2 m from a screen. What are the distances on the screen (from the unscattered slit image) of the three brightest visible (first-order) hydrogen lines?
Red cm

Blue-green cm

Violet cm

3. In a Millikan oil drop experiment the terminal velocity of the droplet is observed to be vt = 1.5 mm/s. The density of the oil is = 830 kg/m3 and the viscosity of air is = 1.82 10-5 kg/m s. Use the following equations to find the values below.

µm
(b) Calculate the mass of the droplet.
kg
(c) Calculate the coefficient of friction.
kg/s

4. Light from a slit passes through a transmission diffraction grating of 330 lines/mm, which is located 2.2 m from a screen. What are the distances on the screen (from the unscattered slit image) of the three brightest visible (first-order) hydrogen lines?

Red cm

Blue-green cm

Violet cm

View Full Posting Details