Explore BrainMass
Share

# Ideal gas in potential step

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

See attached file.

https://brainmass.com/physics/internal-energy/ideal-gas-in-potential-step-109622

#### Solution Preview

There was a mistake in the problem:

Z_{g} = Sum over N of Z(N) Exp(beta mu N)

and NOT:

Z_{g} = Sum over N of Z(N) Exp(- mu N)
-------------------------------------------------------

documentclass[a4paper]{article}
usepackage{amsmath,amssymb}
newcommand{haak}[1]{!left(#1right)}
newcommand{rhaak}[1]{!left [#1right]}
newcommand{lhaak}[1]{left | #1right |}
newcommand{ahaak}[1]{!left{#1right}}
newcommand{gem}[1]{leftlangle #1rightrangle}
newcommand{gemc}[2]{leftlangleleftlangleleft. #1right | #2
rightranglerightrangle}
newcommand{geml}[1]{leftlangle #1right.}
newcommand{gemr}[1]{left. #1rightrangle}
newcommand{haakl}[1]{left(#1right.}
newcommand{haakr}[1]{left.#1right)}
newcommand{rhaakl}[1]{left[#1right.}
newcommand{rhaakr}[1]{left.#1right]}
newcommand{lhaakl}[1]{left |#1right.}
newcommand{lhaakr}[1]{left.#1right |}
newcommand{ket}[1]{lhaakl{gemr{#1}}}
newcommand{bra}[1]{lhaakr{geml{#1}}}
newcommand{brak}[2]{gem{#1lhaakl{#2}}}
newcommand{braket}[3]{gem{#1lhaak{#2}#3}}
newcommand{floor}[1]{leftlfloor #1rightrfloor}
newcommand{half}{frac{1}{2}}
newcommand{kwart}{frac{1}{4}}
renewcommand{imath}{text{i}}

begin{document}
title{Partition function}
date{}
author{}
maketitle
I'll denote ...

#### Solution Summary

A detailed solution is given.

\$2.19
Similar Posting

## Pressure of Ideal Bose and Fermi Gas Satisfy PV = 2/3 E

In class we wrote down the thermodynamical potential for a gas of non-interacting (non- relativistic) fermions in three dimensions. We found a simple result for fermions of the form (see attached).

View Full Posting Details