Purchase Solution

# Planck's Law for Blackbody Radiation vs. The Rayleigh-Jeans Law

Not what you're looking for?

Given: f(lambda) = 8pi*kt(lambda^4)

Where lambda is measured in meters, T is the temperature in kelvins, k is Boltzmann's constant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths but disagrees drastically for short wavelengths. [The law predicts that f(lambda) -> 0 as f(lambda) --> infinity but experiments have shown that f(lambda) --> 0.] This fact is known as the ultraviolet catastrophe.

In 1900 Max Planck found a better model (known as Planck's Law) for blackbody radiation:

f(lambda) = 8pihc(lambda)^05 / [e^hc / (lamdba*kT) - 1]

where lambda is measures in meters, T is the temperature in kelvins, and

h=Planck's constant=6.6262 * 10^-34 J*s

c=speed of light = 2.997925 * 10^8 m/s

k=Boltzmann's constrant = 1.3807 * 10^-23 J/K

1. Use L'hopitals rule to show that the lim f(lambda) = 0 and lambda goes to 0 and that the lim f(lambda) = 0 as lambda goes to 0 for Planck's Law. So this law models blackbody radioation better than Rayleigth-Jeans Law for short wavelengths.

##### Solution Summary

This shows that Planck's law models blackbody radiation better than Rayleigh-Jeans Law for short wavelengths in an attached Word document.

##### Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

##### Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

##### Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.