Share
Explore BrainMass

Explore BrainMass

Vectors, Basis, Row Space, Column Space and Null Space

1. Which of the following sets of vectors are bases and why are they bases for P2
A) 1-3x+2x^2, 1+x+4x^2, 1-7x
B) 4+6x+x^2, -1+4x+2x^2, 5+2x-x^2
C) 1+x+x^2, x+x^2, x^2

2. In each part use the information in the table to find the dimension of the row-space, column-space and null-space of A and the null space of AT

Note A = a thru g

a b c d e f g
Size of A 3 x 3 3 x 3 3 x 3 5 x 9 9 x 5 4 x 4 6 x 2

Rank (A) 3 2 1 2 2 0 2

3. Find a basis for the null space of A.

1 -1 3
a) A= 5 -4 -4
7 -6 2

2 0 -1
b) A= 4 0 -2
0 0 0

1 4 5 2
c) A= 2 1 3 0
0.1 3 2 2

1 4 5 6 9
3 -2 1 4 -1
d) A= -1 0 -1 -2 -1
2 3 5 7 8

1 -3 2 2 1
0 3 6 0 -3
e) A= 2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

Attachments

Solution This solution is FREE courtesy of BrainMass!

Please see the attached file for the complete solution.
Thanks for using BrainMass.

Attachments