# Algebra: Vecor Spaces

Determine whether the given set and operations form a vector space. Give reasons.

a)

V = {(x,y,z) : x,y,z are Real numbers},

(x,y,z) + (x',y',z') = (x + x', y + y' z + z'),

k(x,y,z) = (kx,y,z)

b) the set of all positive real numbers with the operations:

x + y = xy, kx = x^k

© BrainMass Inc. brainmass.com October 10, 2019, 2:53 am ad1c9bdddfhttps://brainmass.com/math/vector-calculus/algebra-vector-spaces-evaluated-398501

#### Solution Preview

a) Let v=(x,y,z) , u=(x',y',z') two vectors from V and k, k' two scalars.

Then kv+kv'= k(x,y,z) + k(x',y',z') = (kx,y,z) + (kx',y',z') = (kx+kx', y+y', z+z') = ...

#### Solution Summary

Verifying if two given sets form vector spaces.

$2.19