Purchase Solution

The Heat Equation on a Metal Ring

Not what you're looking for?

Ask Custom Question

Let u(x,t) describe the temperature of a thin metal ring with circumference 2pi. For convenience, let's orient the ring so that x spans the interval |-pi, pi|. Suppose that the ring has some internal heating that is angle-dependent, so that u(x, t) satisfies the inhomogeneous heat equation

u_t = ku_zz + f(x),

where k is the thermal diffusivity and f(x) describes the internal heating. Furthermore, assume that the temperature of the ring is initially zero.

a) Because the temperature u(x, t) is parameterized by the angle x, the temperature must be a 2pi-periodic function. This suggests that we should write the temperature as a complex Fourier expansion with time-dependent coefficients,

u(x, t) = SUM (A_n)e^(inz).

Substitue this expression into the heat equation, and obtain a differential equation for each (A_n)(t). Using the correct initial conditions, solve each ODE and write down the final solution.

b) Suppose f(x) = cos^2 (x). Find an explicit solution for u(x, t). (Hint: Expand cos^2(x) into a finite number of complex Fourier modes, and show that all but three of the A_n are always zero.)

Purchase this Solution

Solution Summary

The solution shows how to solve teh Heat equation of a circular ring. The solution is 5 pages long including derivations.

Purchase this Solution

Free BrainMass Quizzes
Probability Quiz

Some questions on probability

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.