# The Heat Equation on a Metal Ring

Not what you're looking for?

Let u(x,t) describe the temperature of a thin metal ring with circumference 2pi. For convenience, let's orient the ring so that x spans the interval |-pi, pi|. Suppose that the ring has some internal heating that is angle-dependent, so that u(x, t) satisfies the inhomogeneous heat equation

u_t = ku_zz + f(x),

where k is the thermal diffusivity and f(x) describes the internal heating. Furthermore, assume that the temperature of the ring is initially zero.

a) Because the temperature u(x, t) is parameterized by the angle x, the temperature must be a 2pi-periodic function. This suggests that we should write the temperature as a complex Fourier expansion with time-dependent coefficients,

u(x, t) = SUM (A_n)e^(inz).

Substitue this expression into the heat equation, and obtain a differential equation for each (A_n)(t). Using the correct initial conditions, solve each ODE and write down the final solution.

b) Suppose f(x) = cos^2 (x). Find an explicit solution for u(x, t). (Hint: Expand cos^2(x) into a finite number of complex Fourier modes, and show that all but three of the A_n are always zero.)

##### Purchase this Solution

##### Solution Summary

The solution shows how to solve teh Heat equation of a circular ring. The solution is 5 pages long including derivations.

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Probability Quiz

Some questions on probability

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.