Purchase Solution

Rings with Unity, Isomorphism, Bijectiveness and Invertibility

Not what you're looking for?

Ask Custom Question

Let R be a ring with unity e, R' a set, H a bijective map from R' into R. show that R' becomes a ring with unity if one defines:
a'+ b' = Hˉ¹ (H(a')+ H(b'))
a' b' = Hˉ¹(H(a') H(b'))
0'= Hˉ¹(0)
e'= Hˉ¹(e)
and that is an isomorphism of R' with R. Use this to prove that if u is an invertible
element of a ring then ( R, +, .u ,0,uˉ¹), where a .u b =aub is a ring is ring isomorphic to R.

Show also that (R, θ ,o, 1, 0), where a θ b = a+b -1, a o b= a+b -ab is ring isomorphic to R.

Please see attached for full question.

Purchase this Solution

Solution Summary

Rings with Unity, Isomorphism, Bijectiveness and Invertibility are investigated.

Solution Preview

Please see the attached file for the complete solution.
Thanks for using BrainMass.

Proof:
First, I show that is a ring. For any , we know and . Thus . So is the additive identity of . Since and , then we have . So is the multiplicative identity. It is clear that is ...

Purchase this Solution


Free BrainMass Quizzes
Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Probability Quiz

Some questions on probability