# Ideals and Rings : Homomorphisms

Not what you're looking for?

Problem:

Prove the Second Isomorphism Theorem: If A is an ideal of R and S is a subring of R, then S+A is a subring, A, and (S intersecting A) are ideals of S+A and S, respectively, and (S+A)/A isomorphic to A/(S intersecting A).

##### Purchase this Solution

##### Solution Summary

The Second Isomorphism Theorem is proven.

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Probability Quiz

Some questions on probability

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.