Explore BrainMass
Share

Commutative ring proofs

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

See the attached file.
Let R be any commutative ring and S a subset of R n f0g containing no zero divisors.
Let X be the Cartesian product R  S and denote a relation  on X where (a; b)  (c; d).
(a) Show that  is an equivalence relation on X.
(b) Denote the equivalence class of (a; b) by a=b and the set of equivalence classes by RS (called the
localization of R at S). Show that RS is a commutative ring with 1.
(c) If a 2 S show that fra=a: r 2 Rg is a subring of RS and that r 7! ra=a is a monomorphism, so that
R can be identified with a subring with RS.
(d) Show that every s 2 S is a unit in RS.
(e) Give a universal" definition for the ring RS and show that RS is unique up to isomorphism.

Please see attached pdf.

I need a detailed, rigorous proof of this with explanation of the steps so I can learn.

© BrainMass Inc. brainmass.com October 25, 2018, 12:48 am ad1c9bdddf
https://brainmass.com/math/ring-theory/commutative-ring-proofs-241303

Attachments

Solution Preview

See attached

The extension F is unique; that is, if G : Q --> T ...

Solution Summary

This provides examples of proofs regarding commutative rings and equivalence relations and classes, subrings and monomorphisms, units, and isomorphism.

$2.19
See Also This Related BrainMass Solution

Commutative Ring Proof

Let R be a commutative ring with 1. Prove that if (a,b)=1 and a divides bc, then a divides c. More generally, show that if a divides bc with nonzero a,b then a/(a,b) divides c. (Here (a,b) denotes the g.c.d. of a and b).

View Full Posting Details