Let R be any commutative ring and S a subset of $R \backslash\{0\}$ containing no zero divisors.
Let X be the Cartesian product $R \times S$ and define a relation \sim on X where $(a, b) \sim(c, d)$.
(a) Show that \sim is an equivalence relation on X.
(b) Denote the equivalence class of (a, b) by a / b and the set of equivalence classes by R_{S} (called the localization of R at S). Show that R_{S} is a commutative ring with 1.
(c) If $a \in S$ show that $\{r a / a: r \in R\}$ is a subring of R_{S} and that $r \mapsto r a / a$ is a monomorphism, so that R can be identified with a subring with R_{S}.
(d) Show that every $s \in S$ is a unit in R_{S}.
(e) Give a "universal" definition for the ring R_{S} and show that R_{S} is unique up to isomorphism.

