Purchase Solution

Subsequence that converges to a limit L

Not what you're looking for?

Ask Custom Question

Let theta be a (finite) real number, and show that if (a_n) is a sequence such that the limit (as n goes to infinity) of sup a_n is theta, and if (a_n) has a subsequence that converges to a limit L, then L is less than or equal to theta.

Please see the attached.
Thanks

Attachments
Purchase this Solution

Solution Summary

This question concerns the limits that subsequences of a given infinite sequence of real numbers could converge to, given the condition on the limit superior (lim sup) of the entire sequence. A complete, detailed proof of the stated result, including the definition of a key term used in the question and the solution, is provided. The solution is presented in a .pdf file that contains nearly 200 words.

Solution provided by:
Education
  • AB, Hood College
  • PhD, The Catholic University of America
  • PhD, The University of Maryland at College Park
Recent Feedback
  • "Thanks for your assistance. "
  • "Thank you. I understand now."
  • "Super - Thank You"
  • "Very clear. I appreciate your help. Thank you."
  • "Great. thank you so much!"
Purchase this Solution


Free BrainMass Quizzes
Probability Quiz

Some questions on probability

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.