Purchase Solution

# Subsequence that converges to a limit L

Not what you're looking for?

Let theta be a (finite) real number, and show that if (a_n) is a sequence such that the limit (as n goes to infinity) of sup a_n is theta, and if (a_n) has a subsequence that converges to a limit L, then L is less than or equal to theta.

Thanks

##### Solution Summary

This question concerns the limits that subsequences of a given infinite sequence of real numbers could converge to, given the condition on the limit superior (lim sup) of the entire sequence. A complete, detailed proof of the stated result, including the definition of a key term used in the question and the solution, is provided. The solution is presented in a .pdf file that contains nearly 200 words.

Solution provided by:
###### Education
• AB, Hood College
• PhD, The Catholic University of America
• PhD, The University of Maryland at College Park
###### Recent Feedback
• "Thanks for your assistance. "
• "Thank you. I understand now."
• "Super - Thank You"
• "Very clear. I appreciate your help. Thank you."
• "Great. thank you so much!"

##### Probability Quiz

Some questions on probability

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.