Real Analysis : Jump Discontinuity
Not what you're looking for?
Let f:R->R be increasing. Prove that if lim f(x) as x->c^+ and if lim f(x) as x->c^- must each exist at every point c belong to R. Argue that the only type of discontinuity a monotone function can have is a jump discontinuity.
Purchase this Solution
Solution Summary
Jump Discontinuities are investigated. The solution is concise.
Solution Preview
Proof:
For each c in R, we consider x_n=c-1/n, then x_n->c^- as n->oo, where oo denotes infinity. Since f is increasing, then f(x_n)<=f(x_(n+1)). But f(x_n)<=f(c) for each n. Thus f(x_n) is a bounded ...
Purchase this Solution
Free BrainMass Quizzes
Graphs and Functions
This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.
Probability Quiz
Some questions on probability
Multiplying Complex Numbers
This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts