Purchase Solution

Determine reflexive, symmetric, antisymmetric, transitive, partial order and equivalence.

Not what you're looking for?

Ask Custom Question

Let R = {(1,1)(3,1)(2,2)(1,2)(3,3)(3,2)} on Z = {1,2,3}

Is R reflexive? Why?
Is R Symmetric? Why?
Is R antisymmetric? Why?
Is R transitive? Why?
Is R a partial order? Why?
Is R an equivalence relation?

Purchase this Solution

Solution Summary

It is determined if a relation is reflexive, symmetric, antisymmetric, transitive, partial order and its equivalence.

Solution Preview

1. R is reflexive since it contains (1,1),(2,2) and (3,3)
2. R is not symmetric. It contains (3,1) but not (1,3)
3. R is antisymmetric. We need to check that if (x,y) and (y,x) are in R then x=y. The only pairs (x,y) in R such ...

Purchase this Solution

Free BrainMass Quizzes
Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Probability Quiz

Some questions on probability