Share
Explore BrainMass

Isomorphism of a Group

Group theory
Modern Algebra
Group Theory (LV)
Isomorphism of a Group
Automorphism of a Group
Inner Automorphism of a Group

Let G be any group, g a fixed element in G. Define phi:G--> G by phi(x) = gxg^-1.
Prove that phi is an isomorphism of G onto G.

The fully formatted problem is in the attached file.

Attachments

Solution Summary

It is proven that phi is an isomorphism of G onto G, where G is any group, g a fixed element in G and defined phi:G -->G by phi(x) = gxg^-1.
The solution is detailed and well presented.

$2.19