Purchase Solution

Isomorphism of a Group

Not what you're looking for?

Ask Custom Question

Group theory
Modern Algebra
Group Theory (LV)
Isomorphism of a Group
Automorphism of a Group
Inner Automorphism of a Group

Let G be any group, g a fixed element in G. Define phi:G--> G by phi(x) = gxg^-1.
Prove that phi is an isomorphism of G onto G.

The fully formatted problem is in the attached file.

Purchase this Solution

Solution Summary

It is proven that phi is an isomorphism of G onto G, where G is any group, g a fixed element in G and defined phi:G -->G by phi(x) = gxg^-1.
The solution is detailed and well presented.

Solution provided by:
Education
  • BSc, Manipur University
  • MSc, Kanpur University
Recent Feedback
  • "Thanks this really helped."
  • "Sorry for the delay, I was unable to be online during the holiday. The post is very helpful."
  • "Very nice thank you"
  • "Thank you a million!!! Would happen to understand any of the other tensor problems i have posted???"
  • "You are awesome. Thank you"
Purchase this Solution


Free BrainMass Quizzes
Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Probability Quiz

Some questions on probability

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.