# Matrix method to solve the linear system of equations

Please see the attached file.

3. A company's employees are working to create a new energy bar. They would like the two key ingredients to be peanut butter and oats, and they want to make sure they have enough carbohydrates and protein in the bar to supply the athlete. They want a total of 22 carbohydrates and 14 grams of protein to make the bar sufficient. Using the following table, create a system of two equations and two unknowns to find how many tablespoons of each ingredient the bar will need. Solve the system of equations using matrices. Show all work to receive full credit.

A. Write an equation for the total amount of carbohydrates.

B. Write an equation for the total amount of protein.

C. Determine the augmented matrix that represents the previous two equations.

D. Solve for the previous matrix. Show all work to receive full credit.

E. How many tablespoons of each will there need to be for the new energy bar?

4. A total of 700 tickets were sold for a musical. Senior citizen tickets sold for $15, children tickets sold for $20, and adult tickets sold for $25; the total earnings from ticket sales was $15,750. Five times more children tickets were sold than senior citizen tickets. How many tickets of each type were sold? Set up a system of three equations and three unknowns, use an augmented matrix to solve, and show all work to receive full credit.

A. What are the three unknowns?

B. Write a separate equation representing each of the first three sentences of the word problem.

C. Determine the augmented matrix that represents the three equations.

D. Solve for the matrix. Show all work to receive full credit.

E. How many of each type of ticket were sold?

https://brainmass.com/math/linear-algebra/matrix-method-to-solve-the-linear-system-of-equations-162654

#### Solution Preview

Please see the attached file for detailed solution.

3.

A.Let x be the tbs of peanut butter, and y be the tbs of the ...

#### Solution Summary

The solution is comprised of two word applications example on how to use the matrix method to solve the linear system of equations. It contains detailed explanations on how to set up the equations of system, how to find the augmented matrix and how to solve it by Gaussian elimination.