# Cyclic Groups

Not what you're looking for?

Show that every cyclic group Cn of order n is abelian. (Moreover, show that if G is a group, so is GxG)

##### Purchase this Solution

##### Solution Summary

It is shown that every cyclic group Cn of order n is abelian. The proof is concise.

##### Solution Preview

1. Cn is a cyclic group of order n. Then Cn=<a>, where a is a generator of Cn. So for any elements x,y in Cn, we have x=a^i, y=a^j for some integer i,j. Thus ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Probability Quiz

Some questions on probability

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.