Purchase Solution

Cyclic Groups

Not what you're looking for?

Ask Custom Question

Show that every cyclic group Cn of order n is abelian. (Moreover, show that if G is a group, so is GxG)

Purchase this Solution

Solution Summary

It is shown that every cyclic group Cn of order n is abelian. The proof is concise.

Solution Preview

1. Cn is a cyclic group of order n. Then Cn=<a>, where a is a generator of Cn. So for any elements x,y in Cn, we have x=a^i, y=a^j for some integer i,j. Thus ...

Purchase this Solution

Free BrainMass Quizzes
Probability Quiz

Some questions on probability

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.