Purchase Solution

Let X and Y be non-empty sets and f a mapping of X into Y. Show that f is one-to-one iff there exists a mapping g of Y into X such that gf = iX.

Not what you're looking for?

Topology
Sets and Functions (XXXVII)
Functions

Let X and Y be non-empty sets and f a mapping of X into Y.
Show that f is one-to-one iff there exists a mapping g of Y into X such that gf = iX.

See the attached file.

Solution Summary

This solution is comprised of a detailed explanation of the properties of the mappings.
It contains step-by-step explanation of the following problem:

Let X and Y be non-empty sets and f a mapping of X into Y.
Show that f is one-to-one iff there exists a mapping g of Y into X such that gf = iX.

Solution Preview

Topology
Sets and Functions (XXXVII)
...

Solution provided by:
Education
• BSc, Manipur University
• MSc, Kanpur University
Recent Feedback
• "Thanks this really helped."
• "Sorry for the delay, I was unable to be online during the holiday. The post is very helpful."
• "Very nice thank you"
• "Thank you a million!!! Would happen to understand any of the other tensor problems i have posted???"
• "You are awesome. Thank you"

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.