Explore BrainMass

Explore BrainMass

    Lagrange multipliers and Strirling's approximation

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    See attached file.

    © BrainMass Inc. brainmass.com March 4, 2021, 6:40 pm ad1c9bdddf


    Solution Preview

    Let's first review the theory of Lagrange multipliers. I'm going to explain it in a more general way than is usually done. Suppose you have to find variables x1, x2,... etc. that extremize some function f(x1, x2,...) such that some number of constraints
    g1(x1,x2,...) = 0, g2(x1,x2,...) = 0, ... are met. When you don't have any constraints you have to set all the partial derivatives of f equal to zero. The argument is that if one particular partial derivative is not zero, then you could change that variable and get a higher (or lower) value for the function which means that you are not at the extremal point there. So, all the partial derivatives have to be zero.

    In case of constraints the above argument that all partial derivatives have to be zero ...

    Solution Summary

    A detailed solution is given. A review of the Lagrange multiplier method is included.