Quadratic Function: Vertex, Symmetry and Maximum/Minimum Value
For each quadratic function find:
a. the vertex
b. the line of symmetry
c. the maximum or minimum value
Then graph the function. Please show your work.
y = -4x^2 - 7x + 2
Please see the attached file for the fully formatted problems.
© BrainMass Inc. brainmass.com March 6, 2023, 1:12 pm ad1c9bdddfhttps://brainmass.com/math/basic-algebra/quadratic-function-vertex-symmetry-maximum-minimum-value-7064
Solution Preview
First, I would rearrange the equation into the "standard form", from which the information can be easily read.
The graph of a quadratic function is a parabola. By completing the square on x it is possible to write the equation for a parabola in the form:
(x-k)^2 = 4p(y-h)
and then the point (h, k) is the vertex of the parabola.
Your equation is y = -4x^2 - 7x + 2
Look at the terms that contain x: -4x^2 - 7x. To complete the square, it is best to take out a factor of -4, so you have -4(x^2+(7/4)x).
Now recall that a "perfect square" is a quadratic that, when ...
Solution Summary
The Vertex, Symmetry and Maximum/Minimum Value are found for a quadratic equation. The expert graphs the functions.