# Quadratic equation and its applications

Not what you're looking for?

Part 1: Measure the distance of the diagonal (from one corner to the opposite corner) of the screen on your computer monitor to the nearest tenth of a centimeter or sixteenth of an inch. Measure the height of the screen along the vertical as well. Use the Pythagorean theorem to find the width along the horizontal

In your post, include the length of the diagonal, the width, and the calculations needed to determine the horizontal length of your computer monitor. After you have calculated the approximate length using Pythagorean theorem, use a measuring device to measure the horizontal length of your monitor. Was your measurement close? Why might the measurements not be exactly the same?

Typing hint: Type Pythagorean theorem as a^2 + b^2 = c^2. Do not use special graphs or symbols because they will not appear when pasted to the discussion board.

Part 2: Using the Library, web resources, and/or other materials, find a real-life application of a quadratic function. State the application, give the equation of the quadratic function, and state what the x and y in the application represent. Choose at least two values of x to input into your function and find the corresponding y for each. State, in words, what each x and y means in terms of your real-life application. Please see the following example. Do not use any version of this example in your own post. You may use other variables besides x and y, such as t and S depicted in the following example. Be sure to reference all sources using APA style.

Typing hint: To type x-squared, use x^2. Do not use special graphs or symbols because they will not appear when pasted to the Discussion Board.

When thrown into the air from the top of a 50 ft building, a ball's height, S, at time t can be found by S(t) = -16t^2 + 32t + 50. When t = 1, s = -16(1)^2 + 32(1) + 50 = 66. This implies that after 1 second, the height of the ball is 66 feet. When t = 2, s = -16(2)^2 + 32(2) + 50 = 50. This implies that after 2 seconds, the height of the ball is 50 feet.

Reference rough draft/explanation.

##### Purchase this Solution

##### Solution Summary

I have found the diagonal of my computer screen using quadratic equation. Also, I have provided a real life application of a quadric function and shown how to obtain various quantities using this function.

##### Solution Preview

Following is the text part of the solution. Please see the attached file for complete solution. Equations, diagrams, graphs and special characters will not appear correctly here. Thank you for using Brainmass.

===============================================================================

(1)

Measured values:

Diagonal, d = 38.2 cm

Height, h = 23.1 cm

Horizontal length, w = 30.2 cm

Lets find w using the ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Probability Quiz

Some questions on probability

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.