Explore BrainMass

Explore BrainMass

    Growth Rate of Functions : Limits, Infimum, Supremum, Asymptotic Upper Bound, Asymptotically Negligible, Asymptotic Lower Bound, Asymptotically Dominant and Asymptotically Tight Bound

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    Function A Function B
    ------------ -----------
    n^1/3 6 log(n)

    is A=O(B) ? Yes/No
    is A=o(B) ? Yes/No
    is A=Big Omega(B) ? Yes/No
    is A=Small Omega(B) ? Yes/No
    is A=Theta(b) ? Yes/No

    Also the same for the following pairs.

    n^2*2^n 3^n

    (n^2!) n^n

    n^2/log n n log (n^2)

    (log n)^ log n n/log(n)

    Would appreciate your help. Please be detailed.

    © BrainMass Inc. brainmass.com March 4, 2021, 6:24 pm ad1c9bdddf
    https://brainmass.com/math/basic-algebra/growth-rate-functions-43598

    Solution Summary

    Growth rate of function pairs is analyzed with respect to asymptotic upper bound, asymptotically negligible, asymptotic lower bound, asymptotically dominant and asymptotically tight bound. The solution is detailed and well presented.

    $2.49

    ADVERTISEMENT