# Bernoulli's Inequality

Not what you're looking for?

Suppose that -1 < r < 1. Prove that r^m -> 0 as m -> infinity.

(I think you can write 1/r in the form 1+y, where y>0. Also I believe you can use the Bernoulli's inequality (1+y)^m >= 1+my for all m belonging to N(natural numbers)).

##### Purchase this Solution

##### Solution Summary

This is a proof involving Bernoulli's inequality. The steps are shown in the solution.

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Probability Quiz

Some questions on probability