Purchase Solution

Bernoulli's Inequality

Not what you're looking for?

Ask Custom Question

Suppose that -1 < r < 1. Prove that r^m -> 0 as m -> infinity.

(I think you can write 1/r in the form 1+y, where y>0. Also I believe you can use the Bernoulli's inequality (1+y)^m >= 1+my for all m belonging to N(natural numbers)).

Purchase this Solution

Solution Summary

This is a proof involving Bernoulli's inequality. The steps are shown in the solution.

Purchase this Solution


Free BrainMass Quizzes
Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Probability Quiz

Some questions on probability