Explore BrainMass

Explore BrainMass

    Algebraic Synthetic Division

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    See the attached file.

    In problems 1 through 4, write out the polynomial that has the listed factors:
    Example: (x), (x-1) ANS: x2-x

    1. (x-2), (x+3)

    2. x, (x-2), (x-1)

    3. (x-2i), (x+2i)

    4. x, (x-1), (x+1), (x-2)

    In problems 5 through 8, write the polynominal having the listed roots:

    5. i

    6. 2, 1, -1

    7. 1, 3, 2, -1

    8. -2, +3, i

    In problems 9 through 11, use synthetic substitution to find f(-3) and f(4).

    In problems 12 through 15, you are given a polynomial and one of its factors. Find the remaining factors of the polynomial. Some factors may not be binomials.

    © BrainMass Inc. brainmass.com November 30, 2021, 6:13 am ad1c9bdddf
    https://brainmass.com/math/basic-algebra/algebraic-synthetic-division-528926

    Attachments

    Solution Preview

    In problems 1 through 4, write out the polynomial that has the listed factors:
    Example: (x),(x-1) ANS: x2-x

    1. (x-2),(x+3)

    Solution. We assume that the leading coefficient of the polynomial is 1. So, the polynomial is

    (x-2)(x+3) = x^2 + x - 6

    2. x, (x-2), (x-1)
    Solution. We assume that the leading coefficient of the polynomial is 1. So, the polynomial is

    x(x-2) (x-1) = x^3 - 3x^2 + 2x

    3. (x-2i), (x+2i)
    Solution. We assume that the leading coefficient of the polynomial is 1. So, the polynomial is

    (x - 2i)(x + 2i) = x^2 + 4

    4. x, (x-1), (x+1), (x-2)
    Solution. We assume that the leading coefficient of the polynomial is 1. So, the polynomial is

    x(x-1)(x + 1)(x - 2) = x^4 - 2x^3 - x^2 + 2x

    In problems 5 through 8, write the polynominal having the listed roots:

    5. i
    Solution. We assume that the leading coefficient of the polynomial is 1. We know that if i is a root, then -i is another root. So, the polynomial is

    (x-i)(x+1) = x^2 + 1

    6. 2, 1, -1
    Solution. We assume that the leading coefficient of the polynomial is 1. So, the polynomial is

    (x-2)(x-1)(x+1) = x^3 - 2x^2 - x + 2

    7. 1, 3, 2, -1
    Solution. We assume that the ...

    Solution Summary

    The solution examines algebraic synthetic divisions.

    $2.49

    ADVERTISEMENT