Explore BrainMass

# Maximum Length of Repeating Fraction Pattern

Not what you're looking for? Search our solutions OR ask your own Custom question.

This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

I have problem getting that maximum length of the repeating pattern of a fraction a to be constrained by c-1 if a=b/c

Â© BrainMass Inc. brainmass.com March 5, 2021, 1:27 am ad1c9bdddf
https://brainmass.com/math/algebra/maximum-length-repeating-fraction-pattern-590613

#### Solution Preview

Firstly, we will state the following theorem:
Theorem
If p is a prime number other than 2 and 5, then the cycle length of 1/p is at most (p - 1), and the cycle length must divide (p - 1).
The problem
Now, let a be a rational number, and let b and c be integers such that b/c = a and c > 0 . Since multiplying a repeating decimal by a constant won't change that it's repeating, it's sufficient to show that 1/c has either a terminating or repeating decimal expansion.
Let c* be c with all factors of 2 and 5 removed, that is, c*âˆ™ 2^m 5^n = c for some naturals m and n, and 2 and 5 do not divide c*. Then, 10 and c* are ...

#### Solution Summary

Finding maximum length of the repeating pattern of a fraction a to be constrained by c-1 if a=b/c

\$2.49