Explore BrainMass
Share

Control Systems using Matlab to Obtain Nyquist plot

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

1) G(s) =
Use Matlab and obtain Nyquist Plot

2) G(s) =
Kv1=0.325
Kv2=0.45
Note: K does not equal Kv
Determine the phase margin, gain margin, and closed-loop bandwidth for each case. Determine these both graphically, from the appropriate bode plots, and using the Matlab functions margin and bandwidth

© BrainMass Inc. brainmass.com October 25, 2018, 12:32 am ad1c9bdddf
https://brainmass.com/engineering/electrical-engineering/control-systems-matlab-obtain-nyquist-plot-231336

Attachments

Solution Preview

Please find the attachment for the solutions. The Matlab scripts ...

Solution Summary

The solution uses control systems on Matlab to obtain the Nyquist plot. The phase margin, gain margin and closed-loop bandwidth for each case is determined.

$2.19
See Also This Related BrainMass Solution

Discrete Time Systems

1. a) Find the z-transform of the following system transfer function assuming the input is a unit staircase (i.e. zero order held). The sampling rate is T=0.2.

P(s) = (s+2)/(s+1)(s+5)

b) Given the z-transform of a sequence, U(z) = Z{u},

U(z) = z/(z^2 - 0.8z + 0.6)

i. Find the first 4 terms of u by long division.
ii. Find the underlying signal u(t) assuming that T=1 and no aliasing has occured.

2. a) The system (P_s)(s) = 4/(s^2 + 2s + 3) is subject to a staricase input with T = 0.2 seconds. Calculate the Z domain transfer function (P_z)(z).

b) The system, (P_s)(s) = 1/(s + 2) is subject to a staircase input with T = 0.1 seconds. Calculate the w-domain transfer function (P_z)(w) and comment on the relationship between s- and w-doman transfer functions.

3. a) Given (P_s)(s) = 4/(s + 3), find the w domain description for T = 0.2 and comment on the similarity and difference between (P_s)(s) and (P_w)(w). Use 3 decimal place in your calculations.

bi) Calculate the z-transform of the signal, y)t_ = e^(0t)sin(5t) sampled at T = 1.0.

bii) By finding the inverse z-transform, show that aliasing has occurred and explain why.

c) Find the first 4 terms in the inverse z-transform of Y(z) = 2z/(z^2 + 0.5z + 0.3) by means of long division. Use the final value of the signal to confirm that your results make sense.

4. a) The system, (P_s)(s) = 3/(s^2 + s + 2.5) is subject to a staircase input with T=0.2. Calculate the Z doman transfer function (P_z)(z).

b) A sequence, y_B, has a Z transform,

Y(z) = (z^2 + z)/(z^3 + 2z^2 + 1.4z + 0.3)

Find the first 5 terms in the sequence (y_0 ... y_4) by long division.

c) By considering the initial and final value theorems in the Z domain, find equivalent initial and final value theorems in the W domain and confirm that they are similar to the S domain theorems.

5. Show that aliasing will occur if the signal y(t) = e^-t(sin)(2t) is sampled with T=0.2 by finding the z transform of the sampled sequence and then finding the inverse z transform.

c) If a system has the transfer function P(s) = 1/(s/(3+1)) and T = 0.2, find (P_z)(w).

d) Show that the unit step signal, u(t) = sigma(t)

6. ai) The system, (P_s)(s) = (4s + 7)/(s^2 + 3s + 2) is subject to a staircase input with T = 0.5. Calculate the z domain transfer function, (P_z)(z).

aii) Use the final value theorem to find the final value of the output if the input is a step. Does your answer make sense with respect to the final value of the step response of the continuos system?

b) Given (P_s)(s) = 2/(s + 3), find the w domain description for T = 0.2 and comment of the similarity and difference between (P_s)(s) and (P_w)(w).

c) Given (P_z)(z) = (2z^2 - 0.5z + 1)/(z^2 + 0.2z + 0.5) and u_o = 1, u_1 = 2, u_n = 0, n =/ 0, 1, initioal y = 0.

i) Calculate y_n for n=0, 1, 2, and 3 by writing the difference equation and substituition.
ii) Does the oscillating behaviour make sense in terms of the pole locations in the z plane?

7. a) Find the z-transform of the following system transfer function assuming the input is a unit staircase (i.e. zero order held). The sampling rate is T = 0.2.

P(s) = 3/(s^2 + s + 1)

b) A signal y(t) = e^(-0.t)sin*2pi(t) is sampled at a rate T = 0.5, Show that the z-transform of the sampled sequence is Y(z) = (ze^-0.25)(sin(pi))/(z + e^-0.5)^2 = 0. Make a sketch to explain what has happened.

c) Given P(s) = 1/(s+1), find (P_z)(w) for T = 0.1.

View Full Posting Details