Explore BrainMass
Share

Genetics Questions

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

1. What are the three types of RNA? What is the function of each?

2. Define mitosis and cytokinesis. What would a daughter cell look like if cytokinesis did not occur after mitosis?

3. Define the following terms: gene, allele, dominant, recessive, true breeding, homozygous, heterozygous, cross-fertilization, self-fertilization.

© BrainMass Inc. brainmass.com October 24, 2018, 9:06 pm ad1c9bdddf
https://brainmass.com/biology/genetics/genetics-questions-117127

Attachments

Solution Preview

1. What are the three types of RNA? What is the function of each?

RNA (ribonucleic acid) is a molecule consisting of a chain of ribose sugars linked together by phosphodiester bonds, with a base connected to each sugar. The bases are: uracil, adenine, cytosine, and guanine. RNA is similar to DNA, another kind of nucleic acid. However, DNA contains a different kind of sugar -- deoxyribose, instead of ribose -- and uses the base thymine in place of uracil.

The three kinds of RNA are:

(1) messenger RNA (mRNA): serves as an intermediate between DNA and protein during protein synthesis by bringing the genetic code from the DNA (in the nucleus) to the ribosomes (in the cytoplasm). mRNA molecules attach to the ribosomes and determine the order in which amino acids are assembled to synthesize a protein.

(2) transfer RNA (tRNA): helps translate the nucleotide sequences in mRNA into amino acid sequences when a protein is being built. tRNA molecules have sites for amino-acid attachment and an anticodon region for codon recognition that binds to a specific sequence on the messenger RNA chain. They transfer a specific amino acid on to the growing polypeptide chain.

(3) ribosomal RNA ...

Solution Summary

The answer to the first question briefly describes RNA and the difference between RNA and DNA, then describes the three main types of RNA. The answer to the second question defines mitosis and the different stages of mitosis, in addition to answering the questions given. The answer to the third question consists of a definition of each term.

$2.19
See Also This Related BrainMass Solution

Genetics

A) Step 1 - Transcription: During the process of transcription, the information in the DNA codons of a gene is transcribed into RNA.

Suppose that gene X has the DNA base sequence 3'-TACCCTTTAGTAGCCACT-5'.

Question: What would be the base sequence of RNA after transcription occurs? Turn this in.

(In this particular example, assume that the RNA product does not require processing to become mRNA. In other words, the transcribed RNA becomes the mRNA sequence.)

B) Step 2 - Translation: During protein synthesis at the ribosome, the base sequence of the mRNA codons is translated to the amino acid sequence of a protein.

Question: Using the mRNA that you transcribed above, use the genetic code table to determine the resulting amino acid sequence? Turn this in.

And, turn in the answer to these questions:

What is the significance of the first and last codons? What meaning do these codons have for protein synthesis?

C) Mutations: A mutation is defined as a change in the base sequence of DNA. This may occur as a "mistake" in DNA replication, for example.

Suppose that during DNA replication, two mutant DNA sequences are produced as shown below.

For the 2 mutated DNA sequences, you will investigate how these changes might affect the sequence of amino acids in a protein.

Question: For each of the two, you will need to first transcribe the mRNA, and then use the genetic code table to determine the amino acid sequence.

Turn these in, and state whether the protein sequence changes for each.

Question: Then, explain why a change in amino acid sequence might affect protein function. Turn in your answer.

Here is the original sequence, followed by two mutated sequences, 1 and 2:

Original sequence 3'- TACCCTTTAGTAGCCACT-5'

Mutated sequence 1) 3'-TACGCTTTAGTAGCCATT-5'

Mutated sequence 2) 3'-TAACCTTTACTAGGCACT-5'.

Part 2: Inheritance of Traits or Genetic Disorders (Chapter 12)

Bob and Sally recently married. Upon deciding to plan a family, both Sally and Bob find out that they are both heterozygous for cystic fibrosis, but neither of them has symptoms of the disorder.

Set up and complete a Punnett Square for cystic fibrosis for this couple; turn in the Punnett square.

When doing the Punnett Square, C = normal allele; and c = allele for cystic fibrosis.

Note: You can use the Table function in MS Word to create and fill in a Punnett Square.

Questions:

Based on the Punnett square, calculate chances (percentages) for having a healthy child (not a carrier), a child that is a carrier for the cystic fibrosis trait, and a child with cystic fibrosis? Turn in these percentages.

Part 3: Cell division, sexual reproduction and genetic variability (Chapter 11)

Eukaryotic cells can divide by mitosis or meiosis. In humans, mitosis produces new cells for growth and repair; meiosis produces sex cells (gametes) called sperm and eggs.

Although mutations are the ultimate source of genetic variability, both
meiosis and sexual reproduction also can contribute to new genetic combinations in offspring.

Question: How do both meiosis and sexual reproduction (fertilization) produce offspring that differ genetically from the parents? Be sure to talk about steps in meiosis that increase variability as well as the process of fertilization.

View Full Posting Details