Explore BrainMass

Explore BrainMass

    Random Samples from Two Binomials

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    This exercise is a "what if analysis" designed to determine what happens to the test statistics and interval estimates when elements of the statistical inference change. This can be solved manually or on Excel with Test statistics or Estimators workbook.

    Random samples from two binomial populations produced the following statistics:

    P hat 1 = .45 n1 = 100 p hat2 = .40 n2 = 100

    a) Calculate the p-value of a test to determine whether we can infer that the population proportions differ.

    b) Repeat part a increasing the sample sizes to 400.

    c) Describe what happens to the p-value when the sample sizes increase.

    © BrainMass Inc. brainmass.com June 3, 2020, 9:43 pm ad1c9bdddf

    Solution Preview

    Assuming alpha = 0.05 ...

    (a) p- value = 0.4745 (Conclusion = ...

    Solution Summary

    Neat, step-by-step solution are provided. Solutions in Excel are also provided.