Explore BrainMass

Explore BrainMass

    Hypothesis

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    Suppose a random sample of 100 observers from a binomial population gives a value of p* = .63 and you wish to test the null hypothesis that the population parameter p is equal to .70 against the alternative hypothesis that p is less than .70.

    a) Noting that p* = .63, what does your intuition tell you? Does the value of p* appear to contradict the null hypothesis?

    b) Use the large sample z-test to test Ho: p = .70 against the alternative hypothesis, Ha: p < .70. Use ? = .05. How do the test results compare to your intuitive decision from part a?

    c) Find and interpret the observed significance level of the test you conducted in part b.

    *** p* is supposed to be a p with a "pointed arch" over it. I'm not sure how to describe it but it is like a triangle with no base pointing up over the p in the problem in the book. Ho and Ha are italicized and the o and a is subset (the o and a are actually dropped below the H to the right).

    © BrainMass Inc. brainmass.com June 4, 2020, 1:06 am ad1c9bdddf
    https://brainmass.com/statistics/hypothesis-testing/test-random-sample-observers-binomial-population-379477

    Solution Summary

    A complete, neat and step-by-step solution is provided that tests the random sample of 100 observers from a binomial population.

    $2.19

    ADVERTISEMENT