Explore BrainMass
Share

# Particle moving in a delta potential

A particle of mass m, with energy E>0, is moving in the potential
V(x)=g[delta(x+a) + delta(x-a)]

Assuming that the particle is incident from the left, what is the solution of the Schrodinger equation in all three regions (x<a, -a<x<a, x>a) for this situation? Also, what are the appropriate continuity conditions at x=+a and x= -a?

#### Solution Preview

See attached files.
---------------------------

documentclass[a4paper]{article}
usepackage{graphicx,amsmath,amssymb}
newcommand{haak}[1]{!left(#1right)}
newcommand{rhaak}[1]{!left [#1right]}
newcommand{lhaak}[1]{left | #1right |}
newcommand{ahaak}[1]{!left{#1right}}
newcommand{gem}[1]{leftlangle #1rightrangle}
newcommand{gemc}[2]{leftlangleleftlangleleft. #1right | #2
rightranglerightrangle}
newcommand{geml}[1]{leftlangle #1right.}
newcommand{gemr}[1]{left. #1rightrangle}
newcommand{haakl}[1]{left(#1right.}
newcommand{haakr}[1]{left.#1right)}
newcommand{rhaakl}[1]{left[#1right.}
newcommand{rhaakr}[1]{left.#1right]}
newcommand{lhaakl}[1]{left |#1right.}
newcommand{lhaakr}[1]{left.#1right |}
newcommand{ket}[1]{lhaakl{gemr{#1}}}
newcommand{bra}[1]{lhaakr{geml{#1}}}
newcommand{brak}[2]{leftlangle #1vphantom{#2}right | !left.vphantom{#1}#2
rightrangle}
newcommand{braket}[3]{gem{#1lhaak{vphantom{#1}#2vphantom{#3}}#3}}
newcommand{floor}[1]{leftlfloor #1rightrfloor}
newcommand{half}{frac{1}{2}}
newcommand{kwart}{frac{1}{4}}
newcommand{bfm}[1]{mathbf{#1}}
renewcommand{imath}{text{i}}
renewcommand{dfrac}[2]{#1/#2}

begin{document}
title{Particle moving in a delta potential}
date{}
maketitle
The Schr"odinger equation is:
begin{equation}label{sch}
-frac{hbar^{2}}{2m}frac{partial^{2}}{partial ...

#### Solution Summary

We explain how to solve the Schrödinger equation for the potential V(x)=g[delta(x+a) + delta(x-a)]. We consider the case of an unbound particle with positive energy.

\$2.19