Purchase Solution

A problem on rotational dynamics

Not what you're looking for?

Ask Custom Question

The mechanism shown in the figure (see attachment) is used to raise a crate of supplies from a ship's hold. The crate has total mass 56 kg . A rope is wrapped around a wooden cylinder that turns on a metal axle. The cylinder has radius 0.310 m and a moment of inertia = 2.40 kgm^2 about the axle. The crate is suspended from the free end of the rope. One end of the axle pivots on frictionless bearings; a crank handle is attached to the other end. When the crank is turned, the end of the handle rotates about the axle in a vertical circle of radius 0.12 m, the cylinder turns, and the crate is raised.

(See attached file for diagram and figures)

What magnitude of the force applied tangentially to the rotating crank is required to raise the crate with an acceleration of 0.75 m/s^2 ? (You can ignore the mass of the rope as well as the moments of inertia of the axle and the crank.)

Attachments
Purchase this Solution

Solution Summary

This problem is solved by application of Newton's second law of motion to the rotational motion.

Purchase this Solution


Free BrainMass Quizzes
Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

The Moon

Test your knowledge of moon phases and movement.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Basic Physics

This quiz will test your knowledge about basic Physics.