Purchase Solution

De Broglie Hypothesis of Wavelength

Not what you're looking for?

Ask Custom Question

I need some help with these questions on de Broglie hypothesis: (See attachment for better formula symbols)
1.a. Show how the de Broglie hypothesis for the wavelength of an electron can lead to an explanation of the condition for quantization of orbital angular momentum in the Bohr model for hydrogen atom.

b. Show that the frequency of the radiation emitted by an electron in the hydrogen atom when it makes transition from the n+1 state to the n state given by: f(n, n+1) = mk^2e^4 (2n+1) / 4pih^3 n^2(n+1)^2 where k is the Coulomb constant, and m and e are the mass and charge of the electron, respectively.

c. Show that for a very large n, the above frequency becomes equal to the orbital frequency of the electron. What principle does this result illustrate?

Attachments
Purchase this Solution

Solution Summary

This in-depth solution explains how the de Broglie hypothesis can be applied in the Bohr model of the hydrogen atom, frequency of radiation of the electron when it makes transition of state, and also how a large n causes the above frequency to equal orbital frequency.

Solution Preview

Please see the attached file. Thank you for using BrainMass!

The stability of the Bohr atom electron orbits could be explained in terms of De Broglie's

wave like character of matter. The idea is that the orbits of the electrons about the

hydrogen atom nucleus are an integer number of wavelength in a similar condition to the

formation of a standing wave in a string. In this case the circumference of the orbits is

equal to 2 П r . The de broglie wavelength is λ = h / mv . Since to form a standing wave

we need integer number of wavelengths in the circumference , therefore

n λ = 2 П r ........................................................... ( 1 )

Combining these two ...

Purchase this Solution


Free BrainMass Quizzes
Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.