Explore BrainMass

Shift in hydrogen ground state energy due to proton size

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

In the hydrogen atom, the proton is not really a point charge but has a finite size. Assume that the proton behaves as a uniformly-charged sphere of radius R=10^(-15) m. Calculate the shift this produces in the ground-state energy of hydrogen.

© BrainMass Inc. brainmass.com October 25, 2018, 3:16 am ad1c9bdddf

Solution Preview

From perturbation theory, we know that an energy eigenvalue shifts to first order by:


were |psi> is the unperturbed state and V is the perturbation term in the Hamiltonian. In this problem, the unperturbed Hamilonian H_0 is:

H_0 = p^2/(2m) - e^2/(4 pi epsilon_0 r)

If we treat the proton as a uniformly charged sphere of radius R, the potential energy term in H_0 is not correct inside this sphere. So, let's evaluate the correct potential energy function.

Consider a sphere of radius R with a volume charge of rho. Then by Gauss' law, the radial component of the electric field at distance r will be:

E(r) 4 pi r^2 = Q(r)/epsilon_0 (1)

where Q(r) is the charge enclosed within a distance r from the center of the sphere. By symmetry, the electric fleld only has a radial component, so E(r) is also the magnitude of the electric field. And it then also follows that the potential only depends on r. If r < R, we have

Q(r) = 4/3 pi r^3 rho,

inserting this in (1) gives:

E(r) = rho/(3 epsilon_0) r (2)

If r > R, then Q(r) is the total charge ...

Solution Summary

We explain how the finite size of the proton leads to a shift in the ground state energy of hydrogen. We work out this shift to first order in perturbation theory.

See Also This Related BrainMass Solution


1. The wavelength spectrum of the radiation energy emitted from a system in thermal equilibrium is observes to have a maximum value which decreases with increasing temperature. Outline briefly the significance of this observation for quantum physics.
2. The “stopping potential” in a photoelectric cell depends only on the frequency v of the incident electromagnetic radiation and not on its intensity. Explain how the assumption that each photoelectron is emitted following the absorption of a single quantum of energy hv is consistent with this observation.
3. Write down the de Broglie equations relating the momentum and energy of free particle to, respectively, the wave number k and angular frequency w of the wave-function which describes the particle.
4. Write down the Heisenberg uncertainty Principle as it applies to the position x and momentum p of a particle moving in one dimension.
5. Estimate the minimum range of the momentum of a quark confined inside a proton size 10 ^ -15 m.
6. Explain briefly how the concept of wave-particle duality and the introduction of a wave packet for a particle satisfies the Uncertainty Principle.

View Full Posting Details