Electrostatics: Potential Energy and Conservation Laws

Two particles each have a mass of 5.4 x 10-2 kg. One has a charge of +4.8 x 10-6 C, and the other has a charge of -4.8 x 10-6 C. They are initially held at rest at a distance of 1.1 m apart. Both are then released and accelerate toward each other. How fast is each particle moving when the separation between them is one-half its initial value?

The plates of a parallel plate capacitor are 1 mm apart, each has an area of 1000 cm^2, and they are kept connected across a 600 V battery. Take the medium to be air (Ke = 1).
(a) If the plates are moved apart until the separation is 2 mm, how much mechanical work is done and how much energy is returned to the battery?

4a. Consider the parallel plate capacitor, where the surface charge density is 0.02 uC/m^2, and the distance between the plate is 0.01m. What is the potential difference between the two plates?
4b. What would be the change in potentialenergy of the electron as it moves from the negative plate to the positive plate?
4c.

How much work in Joules would it take to push two protons very slowly from a separation of 2.00 * 10^- 10m (a typical atomic distance) to 3.00 * 10^-15}m (a typical nuclear distance)?
If the protons are both released from rest at the closer distance in part A, how fast are they moving when they reach their original separation

A 2.4 kg block is dropped on to a spring of spring constant 3995 N/m from a height of 5.0 m. When the block is momentarily at rest, the spring has been compressed by 25 cm. Find the speed of the block when the compression of the spring is 15 cm. Use the principle of energyconservation in the analysis and solution.

Two point charges having charges q1=5 µC and q2=7 µC and masses m1=2 grams and m2=3 grams, respectively, are released (in deep space) from rest when they are r=21 cm apart. Determine how fast each charge will be moving when they are very far apart frome each other.

A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 37 degrees.
a) What is the speed of the block as it slides along the horizontal sur

Please see the attachment.
1.) The water slide shown below ends at a height of 1.50 m above the pool. If the person starts from rest at point A and lands in the water at point B, which has a horizontal distance L = 2.52 m from the base of the slide, what is the height h of the water slide? (Assume the water slide is frictionl

A 47.0-g golf ball is driven from the tee with an initial speed of 52.0 m/s and rises to a height of 24.6 m. (a) Neglect air resistance and determine the kinetic energy of the ball at its highest point. (b) What is its speed when it is 8.0 m below its highest point?

A man with a mass of 65 kg skis down a friction-less hill that is 4.4m high. At the bottom of the hill the terrain levels out. As the man reaches the horizontal section, he grabs a 19-kgbackpack and skis off a 1.0 m-high ledge. At what horizontal distance from the edge of the ledge does the man land?