Real Analysis : Continous Extension Theorem
Not what you're looking for? Search our solutions OR ask your own Custom question.
A: Show that a uniformly continous function preserves Cauchy sequences; that is, if f:A->R is uniformly continous and (x_n) subset or equal of A is a Cauchy sequence then show f(x_n) is a Cauchy sequence.
B: Let g be a continous function on the open interval (a,b). prove that g is uniformly continous on (a,b) if and only if it is possible to define values g(a) and g(b) at the endpoints so that the extended function g is continous on [a,b]. (In the forward direction, first produce candidates for g(a) and g(b) and the show the extended g is continous).
© BrainMass Inc. brainmass.com December 24, 2021, 5:07 pm ad1c9bdddfhttps://brainmass.com/math/real-analysis/real-analysis-continuous-extension-theorem-29764
Solution Summary
The Continous Extension Theorem and Cauchy sequances are investigated. The solution is detailed and well presented.
$2.49