Purchase Solution

Probability and cumulative distribution functions

Not what you're looking for?

Ask Custom Question

4. A hand of 5 cards contains 2 red cards and 3 black cards. Trish plays the following game: A card is drawn from the hand. If the card is red, the game stops immediately. If the card is black, this black card is set aside and a red card is put into the hand in its place. Then another card is drawn from the hand and the same process is repeated. The game continues until Trish draws a red card ( Note that there are always 5 cards in the hand before Trish draws a card.)

Let X be the number of black cards Trish drew during the game. (That is, the value of X is determined after the game has finished.)
(a) Make a table showing the probability distribution function(pdf) and cumulative distribution function (cdf) for X. Hint: draw a probability tree modeling the game.
(b) If it is known that Trish drew at least 1 black card, what is the probability that she drew no more that 2 black cards? Hint: Use your table from part (a)
(c) If Trish pays $2 to play this game, and receives $2 for each black card she draws, how much should she expect to win or lose, on average, when she plays this game?
(d) Find sigma (X).

Purchase this Solution

Solution Summary

This solution shows how to make a table with probability distribution function and cumulative distribution function by drawing a probability tree, calculate the probability for a given situation, and calculate how much is expected to be won or lost.

Solution Preview

See attached file.

4. A hand of 5 cards contains 2 red cards and 3 black cards. Trish plays the following game: A card is drawn from the hand. If the card is red, the game stops immediately. If the card is black, this black card is set aside and a red card is put into the hand in its place. Then another card is drawn from the hand and the same process is repeated. The game continues until Trish draws a red card ( ...

Purchase this Solution


Free BrainMass Quizzes
Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.